Skip to main content
Log in

Study Potential of Indigenous Pseudomonas aeruginosa and Bacillus subtilis in Bioremediation of Diesel-Contaminated Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Petroleum products which are used in a wide variety of industries as energy sources and raw materials have become a major concern in pollution of terrestrial and marine environments. The purpose of this study was to assess the potential of indigenous microbial isolates for degradation of diesel fuel. Two most proficient bacterial strains among five isolated strains from polluted soil of an industrial refinery were studied. The isolates then were identified as Pseudomonas aeruginosa and Bacillus subtilis using biochemical tests and 16S rRNA gene sequence analyses. P. aeruginosa showed higher biodegradation efficiency than B. subtilis in shaking flask containing diesel-contaminated water. P. aeruginosa and B. subtilis degraded about 87 and 75% of total hydrocarbons, respectively, in flasks containing 2% diesel and 98% water. The biodegradation efficiency of the isolates decreased as diesel contamination increased from 2 to 5%. The isolates showed significantly higher efficiency on degradation of short-chain hydrocarbons in 20 days, i.e., by using P. aeruginosa, removal efficiency of C10 hydrocarbons was near 90%, while about 69% of C20+ hydrocarbons and 47% of aromatic hydrocarbons were removed. Therefore, the isolates showed high capability in biodegradation of diesel contamination of the refinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aislabie, J., Saul, D. J., & Foght, J. M. (2006). Bioremediation of hydrocarbon contaminated polar soils. Extremophiles, 10, 171–179.

    Article  CAS  Google Scholar 

  • Belhaj, A., Desnoues, N., & Elmerich, C. (2002). Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes. Research in Microbiology, 153, 339–344.

    Article  CAS  Google Scholar 

  • Bento, F. M., Camargo, F. A. O., & Okeke, B. C. (2005). Comparative bioremediation of soils contaminated with diesel oil by natural attenuation biostimulation and bioaugmentation. Bioresource Technology, 96, 1049–1055.

    Article  CAS  Google Scholar 

  • Chen, K. F., Kao, C. M., & Chen, C. W. (2010). Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. Journal of Environmental Sciences, 22, 864–871.

    Article  CAS  Google Scholar 

  • Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98, 1339–1345.

    Article  CAS  Google Scholar 

  • El-Gendy, N. S., & Nassar, H. N. (2015). Kinetic modeling of the bioremediation of diesel oil polluted seawater using Pseudomonas aeruginosa NH1. Energy Sources, 37, 1147–1163.

    Article  CAS  Google Scholar 

  • Gheorghe, C. G., Pantea, O., Matei, V., & Bombos, D. (2011). Research on the influence of diesel oil on the bacterial stems on Bacillus subtilis and Pseudomonas aeruginosa. Revista De Chimie, 62, 582–584.

    CAS  Google Scholar 

  • Greetha, S. J., Joshi, S. J., & Kathrotiya, S. (2013). Isolation and characterization of hydrocarbon degrading bacterial isolate from contaminated sites. APCBEE Procedia, 5, 237–241.

    Article  Google Scholar 

  • Head, I. M. (1998). Bioremediation: towards a credible technology. Microbiology, 144, 599–608.

    Article  CAS  Google Scholar 

  • Joo, H. S., Ndegwa, P. M., Shoda, M., & Phae, C.G. (2008). Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environmental Pollution, 156, 891–896.

    Article  CAS  Google Scholar 

  • Kaczorek, E., Salek, K., Guzik, U., Jesionowski, T., & Cybulski, Z. (2013). Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri. Chemosphere, 90, 471–478.

    Article  CAS  Google Scholar 

  • Kalme, S., Parshetti, G., & Gomare, S. (2008). Diesel and kerosene degradation by Pseudomonas desmolyticum NCIM 2112 and Nocardia hydrocarbonoxydans NCIM 2386. Current Microbiology, 56, 581–586.

    Article  CAS  Google Scholar 

  • Margesin, R., & Schinner, F. (2001). Bioremediation of diesel-oil contaminated soil in an Alpine glacier skiing area. Applied and Environmental Microbiology, 67, 3127–3133.

    Article  CAS  Google Scholar 

  • Mirdamadian, S. H., Emtiazi, G., & Golabi, M. H. (2010). Biodegradation of petroleum and aromatic hydrocarbons by bacteria isolated from petroleum contaminated soil. JPEB, 1, 1–5.

    Article  Google Scholar 

  • Mohanty, G., & Mukherji, S. (2008). Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. International Biodeterioration & Biodegradation, 61, 240–250.

    Article  CAS  Google Scholar 

  • Obayori, O. S., Adebusoye, S. A., & Adewale, A. O. (2009). Differential degradation of crude oil (Bonny Light) by four Pseudomonas strains. Journal of Environmental Sciences, 21, 243–248.

    Article  CAS  Google Scholar 

  • Ramos, J. L., Duque, E., & Ramos-Gonzalez, M. I. (1991). Survival in soils of an herbicide resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Applied and Environmental Microbiology, 57, 260–266.

    CAS  Google Scholar 

  • Richard, J. Y., & Vogel, T. M. (1999). Characterization of a soil bacterial consortium capable of degrading diesel fuel. International Biodeterioration & Biodegradation, 44, 93–100.

    Article  CAS  Google Scholar 

  • Ueno, A., Hasanuzzaman, M., & Yumoto, I. (2006). Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG in soil microcosms. Current Microbiology, 52, 182–185.

    Article  CAS  Google Scholar 

  • Varjani, S. J., & Upasani, V. N. (2016). Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Journal Bioresource Technology, 222, 195–201.

    Article  CAS  Google Scholar 

  • Vieira, P. A., Vieira, R. B., de Franca, F. P., & Cardoso, V. L. (2007). Biodegradation of effluent contaminated with diesel fuel and gasoline. Journal of Hazardous Materials, 140, 52–59.

    Article  CAS  Google Scholar 

  • Wei, Y. H., Chou, J. L., & Chang, J. S. (2005). Rhamnolipid production by an indigenous isolate Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical Engineering Journal, 27, 146–154.

    Article  CAS  Google Scholar 

  • Whang, L. M., Liu, P. W. G., Ma, C. C., & Cheng, S. S. (2008). Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel contaminated water and soil. Journal of Hazardous Materials, 151, 155–163.

    Article  CAS  Google Scholar 

  • Xia, W. X., Li, J. C., Zheng, X. L., & Bi, X. J. (2006). Enhanced biodegradation of diesel oil in seawater supplemented with nutrients. Engineering in Life Sciences, 6, 80–85.

    Article  CAS  Google Scholar 

  • Yan, L., Lai, C. T., & Shieh, W. K. (2000). Biodegradation of dispersed diesel fuel under high salinity conditions. Water Research, 34, 3303–3314.

    Article  Google Scholar 

  • Ye, S. H., Huang, L. C., Yao, O. L., Ding, M., Hu, Y., & Ding, D. (2006). Investigation on bioremediation of oil polluted wetland at Liaodong Bay in northeast China. Applied Microbiology and Biotechnology, 71, 543–548.

    Article  CAS  Google Scholar 

  • Yin, B., Gu, J. D., & Wan, N. (2005). Degradation of indole by enrichment culture and Pseudomonas aeruginosasp isolated from mangrove sediment. International Biodeterioration & Biodegradation, 56, 243–248.

    Article  CAS  Google Scholar 

  • Zhang, Z., Hou, Z., & Yang, C. (2011). Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource Technology, 102, 4111–4116.

    Article  CAS  Google Scholar 

  • Zhang, X., Xu, D., Zhu, C., Lundaa, T., & Scherr, K. E. (2012). Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains. Chemical Engineering Journal, 209, 138–146.

    Article  CAS  Google Scholar 

  • Zhong, W. H., Chen, J. M., Lu, J., Chen, D. Z., & Chen, X. (2007). Aerobic degradation of methyl tert-butyl ether by a Proteobacteria strain in a closed culture system. Journal of Environmental Sciences, 19, 18–22.

    Article  Google Scholar 

  • Zhou, Y., Zhang, J., & Su, E. (2008). Phenanthrene biodegradation by an indigenous Pseudomonas sp. ZJF08 with TX100 as surfactant. Annals of Microbiology, 58, 439–442.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the research office of Sharif University of Technology and Brigham Young University for the technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Saeed Safdari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safdari, MS., Kariminia, HR., Ghobadi Nejad, Z. et al. Study Potential of Indigenous Pseudomonas aeruginosa and Bacillus subtilis in Bioremediation of Diesel-Contaminated Water. Water Air Soil Pollut 228, 37 (2017). https://doi.org/10.1007/s11270-016-3220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3220-5

Keywords

Navigation